原著

カリン(Chaenomelese sinensis) 種子由来の 粘性多糖の糖鎖構造と"とろみ"特性

中 田 忍¹⁾,角 田 万里子²⁾,三 崎 旭³⁾ (¹⁾大阪教育大·教育*,²⁾甲南女大·人間科学**,³⁾四條畷学園大学***)

Structure and Functional Properties of Seed Surface Mucilage of Karin (*Chaenomelese sinensis*)

Shinobu NAKATA¹, Mariko KAKUTA², Akira MISAKI³ ¹Osaka Kyoiku University, ²Konan Women's University, ³Shijonawate Gakuen University

Summary

The seeds of Karin (*Chaenomelese sinensis*), usually not eaten and discarded, are surrounded with transparent mucilage, which appears readily extractable with water to give hydrocolloidal transparent solution. The structural feature of seed-surface mucilage of Karin was investigated by chemical and enzymic studies; it contains an acidic polysaccharide, *i.e.*, O-2-substituted D-glucurono-L-arabino- $(1 \rightarrow 4)$ β -D-xylan. This unique seed-surface mucilage may be constructed with the above acidic polysaccharide and D-xylo $(1 \rightarrow 4)$ - β -D-glucan. These two heteropolysaccharides must be associated by intermolecular hydrogen bonding to provide the interesting thixotropic characteristics with unique water-holding capabilities, appreciable as food additives and cosmetic utilization, such as skin-care lotion.

カリン (Chaenomelese sinensiss) はバラ科の植物で, 日 本では主に山梨,山形,長野県に分布する。4月ごろに開 花し、10月ごろに黄色の200~300gの果実が得られる。 果実の表面はなめらかで、黄褐色の密毛を有する近縁種の マルメロ (Cydonia oblonga) と区別できる。カリン果実自 体は硬く,酸味が強いので生食には適さないが強い芳香が あり、果実部分を砂糖漬け、果実酒としてまた、輪切りに して乾燥させて咳止め等の生薬として利用されている。果 実断面,果実の芯部には数ミリの大きさの種子が2列に並 んでいる。この種を取り出し水に浸漬すると高粘性の透明 な溶液が得られる。この膨潤した種子の切片は顕微鏡下で は種子外皮の周囲に幅数ミクロン、高さ十数ミクロンの袋 状の構造が観察された (Fig. 1)。粘性物質はこの部分から, 分泌されると考えられる。カリン種子から分泌される高粘 性の透明溶液は、感触が非常になめらかであり、古くから 用いられてきた食品由来の安全な機能成分として、増粘剤 や乳化剤としての工業的な利用が期待できる。カリン果実 中の有機化学的成分や薬用成分についてはこれまでに報告 はあるが、種子およびその粘質成分についての知見は見ら れない。そこでカリン種子粘性物質の特性について解明す るために化学構造および物理化学的特性について検討した。

実験方法

1. 試料の調製

1) カリン種子粘性酸性多糖の調製

新鮮なカリン(山形県産)を購入後,ただちに種子を取 り出し,種子重量の5倍容の水に一晩浸漬後,種子固形物 を取り除き,透明な高粘性水溶液を得た。さらに種子には

Fig. 1 Microscopic photograph of Karin seed surface (×100).

^{*}所在地:柏原市旭ヶ丘 4-698-1 (〒582-8582)

^{**}所在地:神戸市東灘区森北町 6-2-23 (〒658-0001)

^{***}所在地:大東市北条 5-11-10 (〒578-0011)

水を加え,同様の操作を2回繰り返した。高粘性溶液に4 倍容のエチルアルコールを加え,得られた沈殿物を水に透 析後,凍結乾燥を行った。(収量:種子湿重量の約3%)

2) 酵素分解および酸による部分加水分解

カリン種子粘性多糖の一部を0.1 M酢酸緩衝液 (pH 4.5) に溶かし、これにセルラーゼ ("ONOZUKA"R-10,(㈱ヤク ルト)を加え、40℃ で一晩反応を行った。酵素を熱失活 後、透析により高分子画分を得た。この高分子画分を酸で 部分水解 (1Nトリフルオロ酢酸 (TFA),80℃,6h) し た後、陰イオン交換カラム (AG 1-X8, 1.5×10 cm) によ り、吸着されない中性オリゴ糖画分と、1N酢酸溶液にて 溶出される酸性オリゴ糖画分を得た。

2. 糖の化学分析

多糖は酸加水分解 (2N TFA, 120℃, 6h), 中和後に 生成単糖をアルジトールアセテート (alditol acetate) と してGLCにより中性糖の分析を行った (カラム: TC-70, 温 度 210℃)。オリゴ糖の分析は Dionex 社の陰イオン液体高 速クロマトグラフを用いたHPAEC-PAD (High-performance anion-exchange chromatography with pulsed amperometric detection) 法により解析した。溶出液として 150 mM 水酸化ナトリウム溶液と 150 mM 水酸化ナトリウム/0.1 M 酢酸ナトリウム溶液を用い, 40 分間で酢酸ナトリウム 度 150~400 mM となるようにグラディエントプログラム を設定し, 流速 1 mL/min にて溶出した。

多糖のメチル化は箱守法¹により行い,加水分解後の部 分メチル化単糖をアルジトールアセテートとして GLC に より同定した。

全糖量の定量はミクロ化したフェノール硫酸法²により 行い,ウロン酸の定量はヒドロキシジフェニール法³によ り測定し,全糖量に対するウロン酸の比率を算出した。カ ルボキシル基の還元は carbodiimide を用いて行った⁴。

3. 粘度測定

測定にはE型回転粘度計(VISCONIC E型,東京計器) を用いた。測定結果は3回の平均値で表示した。

Fig. 2 Effect of cellulase on viscosity of Karin acidic polysaccharide.

4. 保湿性の検討

NH4Cl 飽和水溶液を用いて相対湿度を75% に調整した デシケータ中に精秤した多糖試料を重量一定になるまで放 置,その後塩化カルシウム飽和水溶液にて35% に調整し たデシケータ内で同様に放置,試料の増加重量をその湿度 での吸収水分量として算出し,各相対湿度での水分保持率 を求めた。測定は3回行い,平均値を求めた。

結果と考察

1. カリン種子粘性酸性多糖の構造解析

カリン種子粘性酸性多糖は構成糖として arabinose, xylose, glucose (モル比1.0:22:32)の他にウロン酸を23% 含んでいた。また, 旋光度は [α]D-60.5°(0.25%, 0.1 N NaOH)を示した。

カリンの近縁種であるマルメロ種子の水溶性多糖中には cellulose microfibrils が存在することが報告されている⁵⁾。 一方,カリン種子より得られた粘性酸性多糖にセルラーゼ を作用させると、粘性の低下が観察された。酢酸緩衝液 (pH 4.5)中、40℃でセルラーゼを反応させながら回転粘 度計で経時的に粘度測定を行った結果、Fig. 2に示すよう に、反応開始5分から急激な粘度低下が起こり、1時間後 には反応前の40%にまで粘度が低下した。そこで、セル ラーゼ作用後の粘性酸性多糖溶液を透析することにより、 透析膜内液の高分子画分と膜外液の低分子画分について分 析を行い、構造の検討を行った。

膜外液の低分子画分には単糖 (glucose) 以外にオリゴ糖 (cellobiose, isoprimeveroseなど) が存在した (Fig. 3) が,

Fig. 3 HPAEC profile of neutral oligosaccharides. Column : Carbo Pac PA, Solvent : Gradient program, A, 150 mM NaOH + B, 150 mM NaOH containing 1 M Na acetate.

ウロン酸は存在しなかった。 β -D-galactosidase (E.C.3.2.1. 23, from Asp. oryzae) を作用させると galactose の遊離が 確認されたこととから xylose に galactose は β 結合してい ると考えられる。また, galactose, isoprimeverose が存 在することから, カリン粘性多糖中には cellulose microfibrils ではなく, galacto-xyloglucan として存在することが 示された (Fig. 4)。

高分子画分は主要中性糖として arabinose, xylose, galactose (1.0:2.7:0.4) を含み、さらに36.6%含まれている ウロン酸はグルクロン酸(GlcUA)であることを HPAEC により確認した。ウロン酸の結合は比較的酸加水分解に対 して強いので、部分水解を行い、アルドビウロン酸 (aldobiuronic acid)の分離を行った。部分水解後に得られた中 性オリゴ糖画分 (arabinose: galactose: xylose 1.5:0.4:3.0, および微量の rhamnose, glucose を含む)と xylose を主 とし、グルクロン酸を含む酸性オリゴ糖画分([α]_D+66.5°, 0.4%)を得た。そこでこの画分について Bio Gel P-2 カラ ムを用いてゲル濾過を行い、二糖に相当する主要糖画分を 分離し、その一部についてカルボキシル基還元4)を行った 後、メチル化分析を行った(Table 1)。カルボキシル基還 元によって末端 glucose に相当する 2, 3, 4, 6-tetra-O-Meglucose が出現したこと、また、3, 4-di-O-Me-xylose が認 められたので、この部分のオリゴ糖は一種の aldobiuronic acid と推定された。さらに酸性多糖の結合様式を検討す るために、メチル化分析を行った。その結果、非還元末端 の arabinose, glucose, 1,4 結合の xylose, さらに2位に 枝分かれをもつ xylose 残基の存在が認められ, 1,4 結合 の xylose を主鎖とし、側鎖として GlcUA, glucose, arabinose が結合することが示唆された(Fig. 5)。

カリン粘性の発現には、これら xyloglucan と glucuronoxylan は分子鎖が共有結合するのでなく、分子鎖の会合し た形で存在することが不可欠であると考えられる。マルメ

Fig. 4 Possible structure of xyloglucan in Karin seed-mucilage.

-β-D-Xylp-(1>4)- β-D-Xylp-(1>4)- β-D-Xylp-(1>4)- β-D-Xylp-(1>4)-

Fig. 5 Possible structural feature of Karin acidic polysaccharide moiety.

ロ種子の粘質物には cellulose microfibril が存在し,酸性 多糖に物理的に絡まる形で存在すると言われている。われ われの検討結果からカリンと同様に xyloglucan の可能性 も考えられる。

2. カリン種子酸性多糖の粘性

粘性の発現に対する xyloglucan の影響を明らかにする ために、セルロース、または構造のよく知られた xyloglucan であるタマリンドの xyloglucan (TXG)を添加し、粘 性を測定した。TXG の構造はセルラーゼでカリンの粘性 多糖から分解除去される xyloglucan に類似し、より側鎖 の多い構造であることが知られている⁶⁾。各成分が単独で 示す粘度に比べてより粘度が増大することが認められた (Fig. 6)。セルロース (cellulose, powder, ~20µ, Sigma-Aldrich Co. Ltd.,)を同量添加した場合にはこのような粘 性の上昇は示さなかったことから、glucan の側鎖部分の 存在が粘性発現に重要であることが示唆された。一方、カ リン酸性多糖のカルボキシル基を還元した場合には TXG の添加による粘性上昇はなく(粘性は 1/10 以下)、粘性発 現には酸性多糖のカルボキシル基とグルカンの側鎖が同時

8			
	Linkage	Molar ratio	
indicate	indicated	Native	After -COOH reduction
[Acidic oligosaccharide fraction]			
3, 4-di-O-Me-Xyl	→2Xylp1→	1.0	1.0
2, 3, 4, 6-tetra-O-Me-Glc	$\operatorname{Glc} p 1 \rightarrow$	n.d.	0.6
	GlcUA1→		
[Neutral oligosaccharide fraction]			
2, 3, 4-tri-O-Me-Ara	Ara₁1→	1.15	0.98
2, 3, 4, 6-tetra-O-Me-Glc	$\operatorname{Glc}_p 1 \rightarrow$	0.48	0.94
2, 3, 6-tri-O-Me-Gal	\rightarrow 4Gal _p 1 \rightarrow	n.d.	1.23
2, 3-di-O-Me-Xyl	$\rightarrow 4Xyl_p1 \rightarrow$	tr.	1.00
	$\rightarrow 4 Xyl_p 1 \rightarrow$		
3-O-Me-Xyl	2	1.27	1.08
	t		

 Table 1
 Molar proportion of methylated sugars in the hydrolyzed of methylated oligosaccharides

n.d.: not determined,

tr.: trace.

に関与するものと考えられる。カリン多糖のチキソトロ ピックな"とろみ"粘性が,構造の異なる二種の多糖分子 鎖の会合により形成されたものであることが示された。

3. カリン種子酸性多糖の保湿性

保湿特性について他の多糖試料と比較して行った。ヒア ルロン酸ナトリウムは微生物由来(ナカライテスク(㈱), キトサンはカニ殻由来(ナカライテスク(㈱),じゅんさい の水溶性多糖は既報^{7.8}に従い調製した試料を用いた。

相対湿度を 75% および 35%, それぞれの相対湿度での 水分保持率およびその変動幅を Fig.7 に示した。ヒアルロ ン酸ナトリウムやじゅんさいの水溶性多糖は吸湿量が高く 変動幅も大きいが,カリンは中間的な値を示した。カリン 多糖の保湿性となめらかな物性は化粧品成分としても有用 であると考えられる。

要 約

新鮮なカリン果実についてこれまで注目されなかった 種子表層から分泌される粘性多糖の構造と物性についての 検討を行った。

構成糖およびメチル化分析の結果より、カリン種子粘性 多糖にはβ-1,4結合の xyloglucan と側鎖に arabinose をも つglucurono-xylanの2種類の多糖分子鎖から構成される ことが示された。セルラーゼによる xyloglucan の分解に より粘性は低下するが、その後の xyloglucan の添加で粘 性は回復することが示された。また酸性多糖中のカルボキ シル基を還元した場合には xyloglucan の添加による粘性 への効果が見られないことから、粘性の発現には水素結合 により会合していると考えられるこの2種類の多糖の存在 が必要であり、そのなかでも側鎖の存在が重要であること が示唆された。また、カリン粘質多糖は適度な保水性も有 することから、食品分野における高齢者の安全な嚥下補助 剤などの増粘剤や、化粧品分野における保湿剤など応用性 の高さが期待できる。

参考文献

- Hakomori S (1964) A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem 55:205– 208.
- 福井作蔵(1998) 生物化学実験法1 還元糖の定量法 第2版,学会出版センター,東京:pp.50-52.
- Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54: 484–489.
- 4) Taylor RL, Shively JE, Conrad HE (1976) Stoichiometric reduction of uronic acid carboxy groups in polysac-

Fig. 6 The effects of Tamarind xyloglucan (TXG) on viscosity of Karin acidic polysaccharide.

Fig. 7 Comparison of water holding capability.

謝 辞

本研究の一部は日本学術振興会科学研究費補助金(課 題番号18500602)により行われた。

また,新鮮なカリン種子をご提供いただきました,杉山 博章氏に感謝いたします。

charides. Methods Carbohydr Chem 7: 489-151.

- BeMiller JN (1993) Quince seed gum. in Industrial Gums, 3rd ed., ed. by Whistler RL and BeMiller JN, Academic Press, New York : pp. 244–246.
- Urakawa H, Mimura M, Kajiwara K (2002) Diversity and versatility of plant seed xyloglucan. Trends Glycosci Glycotechnol 14: 355–376.
- Kakuta M, Misaki A (1979) Polysaccharide of "Junsai (*Brasenia schreberi* J. F. Gmel)" mucilage : Constitution and linkage analysis. Agric Biol Chem 43 : 993–1005.
- Kakuta M, Misaki A (1979) The polysaccharide of "Junsai (*Brasenia schreberi* J. F. Gmel)" mucilage: Fragmentation analysis by successive Smith degradations and partial acid hydrolysis. Agric Biol Chem 43: 1269–1276.